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2024 Western North Pacific Typhoon Season

1.​ Introduction
Tropical cyclones (TCs) remain one of the most destructive natural hazards, with 
far-reaching impacts on lives, infrastructure, and economies. In 2024, the western 
North Pacific experienced devastating TC events. Super Typhoon Yagi inflicted 
catastrophic damage, causing an estimated CNY 80 billion in direct economic losses 
across China in September. The storm displaced over 500,000 people, destroyed 
thousands of homes, and severely impacted agricultural regions like Hainan 
Province. That same month, Strong Typhoon Bebinca struck Shanghai, resulting in 
CNY 10 billion in losses, marking it the most damaging typhoon in the region since 
1949.

In the face of such escalating risks, the ClusterTech Platform for Atmospheric 
Simulation (CPAS) emerges as a transformative cloud platform for early TC 
prediction. Based on the Numerical Weather Prediction (NWP) MPAS-A, CPAS 
integrates Hierarchical Time-Stepping (HTS) and a Customized Unstructured Mesh 
Generation (CUMG), allowing it to deliver decent forecasts while significantly saving 
computational power to enhance atmospheric forecast efficiency (Ng et al. 2019; 
Cheung et al. 2022). 

This report evaluates the performance of the CPAS daily run in forecasting TCs 
during the 2024 season in the Western North Pacific, utilizing variable-resolution 
unstructured grids with resolution ranging from 4.5km to 72km (Figure 1). The study 
benchmarks CPAS against two world-leading operational forecasting models: the 
NCEI Global Forecast System (GFS) with global 13km resolution and the ECMWF 
Integrated Forecast System (IFS) HRES deterministic model with global 9km 
resolution, providing a comprehensive analysis of forecast accuracy, track prediction, 
and intensity forecasts.

2024 Tropical Cyclone Season Overview
The 2024 season consists of 25 named TCs in the Northwestern Pacific, ranging 
from tropical storms to super typhoons. Amongst all TCs, 9 of them made landfall in 
China, aligning with the historical average of 7 - 9 landfalls. These TCs brought 
widespread destruction, particularly in coastal areas, emphasizing the importance of 
reliable forecasting systems like CPAS in mitigating their impacts. Figures 2 and 3, 
along with Table 1, provide a detailed timeline and classification of these TCs, 
highlighting their durations and intensities.
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Figure 1: The mesh resolution of CPAS daily run. The resolution for TCs in the 
Western North Pacific and part of China is 9 km and 4.5 km respectively, and the 
outermost domain is 72km.  

Figure 2: 2024 Western North Pacific Typhoon Season Timeline. TC categories: TS 
for tropical storm, STS for strong tropical storm, TY for typhoon, ST for strong 
typhoon, and SST for super strong typhoon. 
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(d) (e)

(f) (g)
Figure 3: China Meteorological Administration (CMA) Tropical Cyclone Best Track 
Dataset of 2024 Tropical Cyclones: (a) all months (b) May, (c) July, (d) August, (e) 
September, (f) October; and (g) November.

Table 1: 2024 named tropical cyclone list (Tropical Storm or stronger) and the 
classification standard can be found on Hong Kong Observatory1. TCs marked with 
bold font are those making landfall in China.

NAME (中文) Classification Start Date End Date
EWINIAR (艾雲尼) TY 2024-05-24 2024-05-30
MALIKSI （馬利斯） TS 2024-05-30 2024-06-01

GAEMI（格萊美） SuperTY 2024-07-19 2024-07-28
PRAPIROON（派比安） STS 2024-07-19 2024-07-23

MARIA（瑪莉亞） STS 2024-08-08 2024-08-12
SON-TINH（山神） TS 2024-08-11 2024-08-13

1 HKO Tropical Cyclone Classification
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AMPIL (安比) STY 2024-08-13 2024-08-18
WUKONG (悟空) TS 2024-08-13 2024-08-14

JONGDARI (雲雀) TS 2024-08-19 2024-08-20
SHANSHAN (珊珊) SuperTY 2024-08-22 2024-08-30

YAGI (摩羯) SuperTY 2024-09-01 2024-09-08
LEEPI (麗琵) TS 2024-09-05 2024-09-06

BEBINCA (貝碧嘉) STY 2024-09-10 2024-09-18
PULASAN (普拉桑) STS 2024-09-15 2024-09-21

SOULIK (蘇力) TS 2024-09-17 2024-09-19
CIMARON (西馬崙) TS 2024-09-25 2024-09-26

JEBI (飛燕) STS 2024-09-27 2024-10-01
KRATHON (山陀兒) SuperTY 2024-09-27 2024-10-04
BARIJAT (百里嘉) TS 2024-10-09 2024-10-10

TRAMI (潭美) TY 2024-10-21 2024-10-28
KONG-REY (康妮) SuperTY 2024-10-25 2024-11-01

YINXING (銀杏) SuperTY 2024-11-04 2024-11-12
TORAJI (桃芝) TY 2024-11-09 2024-11-15
MAN-YI (萬宜) SuperTY 2024-11-09 2024-11-19
USAGI (天兔) SuperTY 2024-11-12 2024-11-16

2.​ Data
The CPAS daily run uses GFS 00UTC data (0.25°x0.25°) as its initial condition, 
producing forecasts up to 4 days and 16 hours (Total 112 hours). CPAS output is 
interpolated to a grid resolution of approximately 10 km (0.1°x0.1°) to support the TC 
tracking process, enabling detailed and consistent analysis across all forecast 
models. 

GFS/ECMWF TC Forecast Track dataset
TCs forecast track data from GFS and ECMWF are extracted at NCAR Research Data 
Archive Tigge Model Tropical Cyclone Track Data2. 

CMA Tropical Cyclone Best Track Dataset
The China Meteorological Administration (CMA) Tropical Cyclone Best Track 
Dataset3 provides detailed information on TCs originating in the western North 
Pacific. This basin lies north of the equator and west of 180°E, encompassing the 

3 CMA Tropical Cyclone Best Track Data was obtained from tcdata.typhoon.org.cn
2 NCAR Research Data Archive Tigge Model Tropical Cyclone Track Data
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South China Sea. The dataset includes 6-hourly analyses of TC tracks and 
intensities. 

3.​ Methodology
3.1.​ Vortex Tracker
TCs from CPAS results are located using GFDL vortex tracker 3.94 developed by the 
National Center for Atmospheric Research (NCAR). 

3.2.​ Track Analysis
Track error analysis for TC forecasts employs direct positional error (DPE), which 
calculates the distance between forecast and best-tracked data of TC position.

3.3.​ Intensity Analysis
The intensity performance assessment focuses on two key parameters of TCs: 
maximum wind speed and central pressure (mean sea level pressure). The 
evaluation involves two metrics:

    Bias: This represents the difference between the model-predicted intensity and the 
observed intensity (take CMA best track as ground true), calculated as:

    Bias = Model − Observation

   Absolute Error: This measures the magnitude of the bias, indicating the overall 
discrepancy without considering the sign of the deviation:

    Error = | Bias |

These metrics provide insight into the model's ability to accurately capture both the 
strength and central pressure characteristics of TCs. The absolute error offers a 
straightforward measure of forecast accuracy, regardless of over- or 
under-prediction.

3.4.​ Hypothesis Testing
Hypothesis testing will be used to compare the error of CPAS to GFS and ECMWF. 
Taken with absolute values, the samples exhibit skewness which does not satisfy the 
assumption of data normalization as required in the t-test, the Wilcoxon signed rank 
test instead, is used as a non-parametric test which does not require specified 

4 Biswas, M. K., D. Stark, and L. Carson, 2018: GFDL Vortex Tracker Users Guide V3.9a, 35 pp.
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sample distribution. The computation steps are briefly described as follows, details 
of the implementation and theory can be found at Wilcoxon (1965):

1.​ For each pair of observations, calculate the difference between the two 
related groups (e.g., Error of GroupCPAS - GroupGFS)

1.​ Take the absolute values of the non-zero differences and rank them from 
smallest to largest. If there are ties, assign the average rank to the tied values.

2.​ Assign the sign of the original difference (positive or negative) to the 
corresponding ranks.

3.​ Calculate the sum of the ranks for the positive differences (W+) and negative 
differences (W-). The test statistic W is defined as the smaller of these two 
sums: W = min(W+, W-). 

4.​ For small sample sizes (< 20), refer to Wilcoxon signed-rank test tables to find 
the critical value of W. For larger sample sizes (typically n>= 20), the 
distribution of W can usually be approximated by a normal distribution.

5.​ Compare the calculated critical value from the table. If using a normal 
approximation for larger samples, calculate the z-score of W, i.e.

 𝑧 =
 (𝑊 − µ

𝑊
)

σ
𝑤

,  

where and are the mean and standard deviation of the distribution of W. μ
𝑤

​  σ
𝑤

If the calculated p-value is less than the significance level (0.05), or if W is less 
than the critical value, reject the null hypothesis.

3.5.​ Rapid Intensification Analysis
Rapid intensification is a rapid strengthening of a TC over a short time. In convention, 
it is defined as a TC increase in wind speed of at least 30 kt within 24 hours, as 
proposed by Kaplan and DeMaria (2003). Although several studies have suggested 
different definitions, CMA adopts the definition of 15m/s (~29.2kt) (Xiang, 2022), 
which is close to Kaplan and Demaria’s definition. We will follow the CMA convention 
for 15m/s in 24 hours as the threshold.
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Figure 4: Demonstration of valid RI forecast, setting a maximum 24-hour deviation 
from the observation record. TP and FP labels represent True Positive and False 
Positive respectively.

Three metrics are used to evaluate the models’ effectiveness for forecasting TC RI, 
where the TP, TN, FP and FN represent True Positve, True Negative, False Positive 
and False Negative respectively. Their relationships are shown in Figure 5.

●​ The probability of detection (POD): evaluates the effectiveness of a detection 
system. It quantifies the likelihood that a true positive will be correctly 
identified.

𝑃𝑂𝐷 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

●​ The False Alarm Ratio (FAR): measures the frequency at which a detection 
system incorrectly identifies a negative case as positive. It is calculated using 
the formula:

𝐹𝐴𝑅 =  𝐹𝑃
𝐹𝑃 + 𝑇𝑁

●​ The Critical Success Index (CSI): evaluates how effectively a system predicts 
events compared to actual occurrences. It is calculated as:

𝐶𝑆𝐼 =  𝑇𝑃
𝑇𝑃+𝐹𝑃+𝐹𝑁
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Figure 5: Demonstration of confusion matrix table, extracted from Towards Data 
Science5.

4.​ Performance
4.1.​ Track Analysis 
Overall, CPAS performance in the TC track forecast is comparable to the other two 
leading-edge operating forecast models. 

The DPE of CPAS lies between that of ECMWF and GFS (Figure 6a), with GFS 
exhibiting the highest DPE and ECMWF the lowest. Figure 6b  shows that CPAS 
demonstrates a 5 - 15% DPE improvement for one day or longer forecast time 
compared to GFS by using its dataset.

5 A., Ragan (2018). Taking the Confusion Out of Confusion Matrices, Towards Data Science. 
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(a)

(b)
Figure 6: (a) Bar plot comparing CPAS (red), GFS (blue), and ECMWF (green) of TC 
direct positional error (DPE) versus forecast hour, and (b) CPAS percentage reduction 

in DPE compared to GFS. .𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐷𝑃𝐸

𝐺𝐹𝑆 
−𝐷𝑃𝐸

𝐶𝑃𝐴𝑆

𝐷𝑃𝐸
𝐺𝐹𝑆

4.2.​ Intensity Analysis
In Figure 7 (upper left), CPAS performs better than ECMWF and is comparable to 
GFS in wind speed prediction. At shorter forecast times (T+0h to T+36h), CPAS has 
lower wind errors than ECMWF, though errors increase steadily over time, reaching 
approximately 9 m/s at T+108h, below ECMWF and marginally above GFS. For Wind 
speed bias (Figure 7 lower left), CPAS overestimates wind speeds to a slight degree, 
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showing a mean positive bias of around 0 - 2.5m/s, while GFS and ECMWF exhibit a 
stronger negative bias, varying from -2 to -4m/s and -6 to -9m/s respectively.

In pressure error (Figure 7 upper right), CPAS outperforms ECMWF and is slightly 
better than GFS. It maintains lower errors than ECMWF from about 3 - 5 hPa in the 
first 94 hours. In the first 72 forecast hours, CPAS’s pressure error is slightly lower 
than GFS to a small extent. By T+108h, CPAS's pressure error reaches 15 hPa, 
remaining lower than ECMWF but higher than GFS. All models show positive 
pressure bias in the lower right of Figure 7, but CPAS demonstrates its competitively 
low mean bias. ECMWF considerably overestimates pressure, while GFS maintains a 
partly positive bias at shorter lead times. Notably, both CPAS and GFS indicate 
decreasing bias as the forecast proceeds.

Figure 7: Bar plot comparing CPAS (red), GFS (blue) and ECMWF (green) of TC wind 
speed error (top-left) and bias (bottom-left); and central pressure error (top-right) and 
bias (bottom-right) versus forecast hour

For both wind speed and central pressure (Figures 8a and 8b), CPAS demonstrates 
strong predictability in the first 72 hours, with regression line slopes exceeding 0.8, 
outperforming GFS and ECMWF. CPAS moderately overestimates TC strength for 
TCs in weaker intensities. The decline in CPAS performance in T+96h could be 
attributed to fewer sample points and increased model error uncertainty.
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(a) (b)
Figure 8: 3 models versus observation (a) wind speed and (b) central pressure at 
T+24h, T+48h, T+72h, and T+96h respectively. n, y=mx+c, and R2 shown in legends 
represent the number of samples, the equation of the fitted line, and the coefficient 
of determination respectively.
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4.3.​ Hypothesis Test
Table 2 presents the p-values from the Wilcoxon signed-rank test. CPAS provides 
slightly better track forecasts than GFS, with significant differences observed 
between T+24h and T+72h. Regarding wind and pressure absolute error, CPAS 
significantly outperforms ECMWF until T+96h, while its performance in wind 
prediction is comparable to GFS, and a significantly lower pressure error from T+24h 
to T+72h.

Table 2: Wilcoxon signed-rank test absolute error p-values for PDirect_Positional_Error , 
PWind_Error , and PPressure_Error. P-values that are less than 0.05 are highlighted, signifying 
that CPAS demonstrates a statistically better result in comparison.

Forecast 
time (hour)

Wilcoxon signed-rank test
PDirect_Positional_Error PWind_Error PPressure_Error

GFS ECMWF GFS ECMWF GFS ECMWF
0 - 24 0.719 1.000 0.940 0.000 0.056 0.000

24 - 48 0.010 1.000 0.712 0.000 0.039 0.014
48 - 72 0.007 1.000 0.702 0.000 0.001 0.036
72 - 96 0.285 0.994 0.545 0.000 0.385 0.026

96 - 108 0.468 0.873 0.818 0.003 0.907 0.313

4.4.​ Rapid Intensification (RI)
8 TCs underwent RI: Ewiniar, Gaemi, Yagi, Krathon, Kong-rey, Yinxing, Usagi, and 
Manyi as shown in Figure 9. CPAS generally exhibits better alignment with the CMA 
best track during the RI phase of TCs, as evident from its slopes being closer to the 
CMA reference compared to GFS and ECMWF, which is particularly noticeable in 
cases like Ewiniar, Yagi, and Krathon. CPAS effectively captures the trend and 
intensity changes during the critical first 24 hours of RI. In contrast, GFS and ECMWF 
show significant deviations, with GFS often producing steeper or flatter predictions 
and ECMWF displaying a smoother but less responsive pattern. 
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Figure 9: Time series of the intensity of seven TCs that underwent rapid 
intensification (RI). The CMA best track is shown in black, while CPAS (red), GFS 
(blue), and ECMWF (green) represent model predictions. Multiple lines correspond to 
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different model initialization times. Dots indicate instances of RI over the past 24 
hours, and solid lines depict the entire RI process.

Table 3 summarizes the model performances regarding RI events as a contingency 
table with skill scores, including POD, FAR, and CSI. The computation methods of 
each metric can be found in Section 3.4. The results show that CPAS outperforms 
both GFS and ECMWF, achieving a POD of 0.85, indicating a strong ability to correctly 
identify RI events, while GFS and ECMWF have lower PODs of 0.44 and 0.43 
respectively. However, CPAS has a higher FAR of 0.14 compared to 0.03 for both GFS 
and ECMWF, suggesting that it may generate more false alarms. Despite this, CPAS 
excels in overall performance with a CSI of 0.54, significantly better than the 0.39 
scores of GFS and ECMWF. These metrics highlight CPAS's strengths in predicting RI, 
emphasizing its value for stakeholders requiring timely and accurate forecasting in 
TC scenarios.

Table 3 Contingency Table and verification metrics of the models regarding their 
capability in forecasting TC RI. Bold values highlight the best performance score 
among models for each metric.

CPAS GFS ECMWF

True False True False True False

CMA Best 
Track

True 22 4 11 14 11 17

False 16 99 3 113 3 111

Probability of Detection 0.85 0.44 0.43

False Alarm Ratio 0.14 0.03 0.03

Critical Success Index 0.54 0.39 0.39
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5.​ Conclusion
The performance evaluation of the ClusterTech Platform for Atmospheric Simulation 
(CPAS) highlights its capability as a reliable and efficient tool for TC forecasting. 
Compared to the world-leading operational models GFS and ECMWF, CPAS 
demonstrates competitive performance in predicting TC track and intensity, 
addressing several key challenges in TC forecasting.

Key Findings

1.​ Track Prediction: CPAS produces statistically smaller DPE (Direct Position 
Error) than GFS, particularly within the T+72h forecast window, showcasing its 
strength in track accuracy during critical days of prediction periods. While 
ECMWF maintains better overall track accuracy, CPAS consistently narrows 
the performance gap and provides robust predictions.

2.​ Intensity Prediction: CPAS statistically outperforms ECMWF in wind speed 
and central pressure errors, particularly in the first 96 hours, and shows 
comparable performance to GFS. This is crucial for forecasting TC intensity, 
as precise predictions of wind speed and pressure are critical for risk 
assessment and mitigation planning.

Addressing TC Forecasting Challenges

CPAS tackles several persistent challenges in TC forecasting, including:

1.​ Reliable Prediction of TCs’ RI: CPAS's steady ability to reliably predict TCs’ RI 
provides critical lead time for stakeholders. This helps reduce the risk of 
catastrophic losses by enabling proactive decision-making, resource 
allocation, and evacuation planning.

2.​ Reduce Track Forecasting Uncertainty: By narrowing track errors and 
delivering consistent performance across different forecast periods, CPAS 
reduces uncertainty in TC track predictions, a common issue in operational 
forecasting.

3.​ Better Intensity Forecasting Accuracy: Accurate wind speed and pressure 
forecasts allow stakeholders to better prepare for the severity of TCs, 
particularly in vulnerable regions.
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For more information, please contact: 

Clustertech Limited
Units 211 - 213, Lakeside 1, No. 8 Science Park West Avenue, Hong Kong Science 

Park, N.T., Hong Kong
Tel: +852 2655 6100

Email: enquiry@cpas.earth
https://cpas.earth/
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